A great diversity of pheromone structures are used by moth species (Insecta: Lepidoptera) for long-distance mating signals. The signal͞ response channel seems to be narrow for each species, and a major conundrum is how signal divergence has occurred in the face of strong selection pressures against small changes in the signal. Observations of various closely related and morphologically similar species that use pheromone components biosynthesized by different enzymes and biosynthetic routes underscore the question as to how major jumps in the biosynthetic routes could have evolved with a mate recognition system that is based on responses to a specific blend of chemicals. Research on the desaturases used in the pheromone biosynthetic pathway for various moth species has revealed that one way to make a major shift in the pheromone blend is by activation of a different desaturase from mRNA that already exists in the pheromone gland. Data will be presented to support the hypothesis that this process was used in the evolution of the Asian corn borer, Ostrinia furnacalis species. In that context, moth sex-pheromone desaturase genes seem to be evolving under a birth-and-death process. According to this model of multigene family evolution, some genes are maintained in the genome for long periods of time, whereas others become deleted or lose their functionality, and new genes are created through gene duplication. This mode of evolution seems to play a role in moth speciation, as exemplified by the case of the Asian corn borer and European corn borer, Ostrinia nubilalis species.C hemical communication systems in insects have provided exciting challenges to researchers in chemistry, biochemistry, physiology, ecology, genetics, and behavior for over four decades. Much of this research has been focused on moths in the order Lepidoptera, which is the second largest insect order with well over a hundred thousand described species. Most of the hundreds of species studied have been found to use a long-distance chemical communication system for attracting mates (www.nysaes. cornell.edu͞fst͞faculty͞acree͞pheronet͞index.html). Initially, pheromone components were characterized, and behavior mediated by these chemical cues was studied. However, increased knowledge of the precise blends used by different species only raised more questions on many aspects of the communication system. Underlying these questions was the fundamental curiosity about the extensive radiation seen in moths and what role pheromones played in the speciation process. How did sex pheromones evolve and could changes in this mating system give rise to isolated populations that become new species? Studies on pheromone biosynthetic pathways provided basic information on this issue, but the use of molecular techniques in the postgenomics era has become essential in addressing these questions.
Pheromone Biosynthetic PathwaysBy the 1980s, many moth pheromone components had been characterized, and a majority were acetates, alcohols, or aldehydes with long hydrocarbon ch...