Yersiniabactin (Ybt) synthetase is a three-subunit, 17-domain [7 domains in high molecular weight protein (HMWP)2, 9 in HMWP1, and 1 in YbtE] enzyme producing the virulence-conferring siderophore yersiniabactin in Yersinia pestis. The 350-kDa HMWP1 subunit contains a polyketide synthase module (KS-AT-MT 2-KR-ACP) and a nonribosomal peptide synthetase module (Cy3-MT3-PCP3-TE). The fulllength HMWP1 was heterologously overexpressed in Escherichia coli and purified to near homogeneity. The purified HMWP1 showed thioesterase activity toward acyl-CoAs, such as acetyl-CoA, benzoylCoA, and malonyl-CoA, with saturation kinetics and relative catalytic efficiencies of 172:50:1. A chain-releasing thioesterase (TE) activity is ascribed to the C-terminal TE domain, and this was substantiated by the fact that acyl-N-acetylcysteamines were hydrolyzed by the didomain PCP 3-TE fragment of HMWP1. However, PCP3-TE failed to hydrolyze any of the acyl-CoAs, suggesting the TE domain does not recognize CoA moiety, thus the acyl-CoA hydrolysis by HMWP1 must involve other domains. Ser-to-Ala mutants in each of the AT, ACP, PCP 3, and TE domains reduced hydrolysis rates of the two fastest substrates, acetyl-CoA and benzoyl-CoA, by more than two orders of magnitude. Thus, the acyl-CoA hydrolysis activity requires 4 of the 9 domains of HMWP1, and it is consistent with autoacylation of the AT domain active site serine and subsequent passage of the itinerant acyl chain from AT to ACP to PCP 3 to the TE domain, a cascade of four sequential acyl-enzyme intermediates, for hydrolytic turnover. This could represent an editing pathway for this polyketide synthaseÍnonribosomal peptide synthetase assembly line.