Lipases are glycerol ester hydrolases (E.C. 3.1.1.3) that catalyze the hydrolysis of triacylglycerols to free fatty acids and glycerol. They resemble esterases (E.C. 3.1.1.1) in catalytic activity but differ in that substrates. True lipases prefer water-insoluble fats containing medium-to long-chain fatty acids. Lipases are used extensively in the detergent, food, dairy, pulp, and pharmaceutical industries due to their high productivity and diversity, such as substrate specificity, stability in organic solvents, and high degree of regioselectivity [1].Bacterial lipases are classified into eight families based on amino acid sequence homology [2]. Family I lipases, called true lipases, are large group which is further divided into 6 subfamilies. They possess the pentapeptide Gly-Xaa-Ser-Xaa-Gly (GxSxG) motif with the active site serine situated near the center of the conserved sequence [2,3]. Most of the bacterial lipases from Bacillus and Staphyloccocus species belongs to this family. The enzymes grouped in family II do not exhibit the conventional GxSxG motif but rather display a Gly-Asp-Ser-Leu (GDSL) motif containing the active site serine residue. The GDSL motif localized in near N-terminus of amino acid sequence which is compared to GxSxG motif conserved in center of the sequence [4]. GDSL lipases represent the lipolytic activities with multifunctional properties and broad substrate specificity [5,6]. Furthermore, a subgroup of this GDSL family was classified as the SGNH hydrolase superfamily, with four conserved residues Ser, Gly, Asn and His in four conserved blocks I, II, III, and V [6]. While the SGNH hydrolases are well known in eukaryotic organisms, the isolation and characterization of SGNH hydrolases from bacteria remain to be limited [7]. In bacteria, GDSL motif enzymes are generally known as esterase type which has preference to short chain fatty acids [8][9][10][11]. To date, there have been few reports of GDSL family lipases in bacteria [12,13]. One example is a GDSL lipase from Mycobacterium tuberculosis and it was known to be actively involved in the intracellular survival during the nutritive stress conditions [12].Geobacillus species, which belongs to thermophilic Gram-positive spore-forming bacteria that can grow over a range of 45-75 o C, are of interest for biotechnology field as source of thermostable enzymes. Also, Geobacillus species are known to have potential availability for digesters of lignocellulose, hydrocarbons bioremediators, biofuel producers, cellular factories for heterologous expression of enzymes because of their structural and functional stability in extreme environments [14][15][16][17]. Several lipases which belong to family I have been reported from this species [18,19]. A number of family I and II esterases from this species have been characterized [20,21] Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est...