The antioxidant N-acetyl-L-cysteine prevented the autophagydependent delivery of mitochondria to the vacuoles, as examined by fluorescence microscopy of mitochondria-targeted green fluorescent protein, transmission electron microscopy, and Western blot analysis of mitochondrial proteins. The effect of N-acetyl-L-cysteine was specific to mitochondrial autophagy (mitophagy). Indeed, autophagy-dependent activation of alkaline phosphatase and the presence of hallmarks of non-selective microautophagy were not altered by N-acetyl-L-cysteine. The effect of N-acetyl-L-cysteine was not related to its scavenging properties, but rather to its fueling effect of the glutathione pool. As a matter of fact, the decrease of the glutathione pool induced by chemical or genetical manipulation did stimulate mitophagy but not general autophagy. Conversely, the addition of a cellpermeable form of glutathione inhibited mitophagy. Inhibition of glutathione synthesis had no effect in the strain ⌬uth1, which is deficient in selective mitochondrial degradation. These data show that mitophagy can be regulated independently of general autophagy, and that its implementation may depend on the cellular redox status.Autophagy is a major pathway for the lysosomal/vacuolar delivery of long-lived proteins and organelles, where they are degraded and recycled. Autophagy plays a crucial role in differentiation and cellular response to stress and is conserved in eukaryotic cells from yeast to mammals (1, 2). The main form of autophagy, macroautophagy, involves the non-selective sequestration of large portions of the cytoplasm into doublemembrane structures termed autophagosomes, and their delivery to the vacuole/lysosome for degradation. Another process, microautophagy, involves the direct sequestration of parts of the cytoplasm by vacuole/lysosomes. The two processes coexist in yeast cells but their extent may depend on different factors including metabolic state: for example, we have observed that nitrogen-starved lactate-grown yeast cells develop microautophagy, whereas nitrogen-starved glucosegrown cells preferentially develop macroautophagy (3).Both macroautophagy and microautophagy are essentially non-selective, in the way that autophagosomes and vacuole invaginations do not appear to discriminate the sequestered material.