Phones : +34 881816949 and +34 881816946 Emails: anton.barreiro@usc.es and mcelina.rodicio@usc.es Running title: GABA promotes regeneration after spinal cord injury peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/280891 doi: bioRxiv preprint first posted online Mar. 12, 2018;
2
AbstractIn mammals, spinal cord injury (SCI) causes permanent disability. The poor regenerative capacity of descending neurons is one of the main causes of the lack of recovery after SCI. In addition, the prevention of retrograde degeneration leading to the atrophy or death of descending neurons is an obvious prerequisite for the activation of axonal regeneration. Lampreys show an amazing regenerative capacity after SCI.Recent histological work in lampreys suggested that GABA, which is massively released after a SCI, could promote the survival of descending neurons. Here, we aimed to study if GABA, acting through GABAB receptors, promotes the survival and axonal regeneration of descending neurons of larval sea lampreys after a complete SCI. First, we used in situ hybridization to confirm that identifiable descending neurons of late stage larvae express the gabab1 subunit of the sea lamprey GABAB receptor. We also observed an acute increase in the expression of this subunit in descending neurons after a complete SCI, which further supported the possible role of GABA and GABAB receptors in promoting the survival and regeneration of these neurons. So, we performed gain and loss of function experiments to confirm this hypothesis. Treatments with GABA and baclofen (GABAB agonist) significantly reduced caspase activation in descending neurons 2 weeks after a complete SCI. Long-term treatments with GABOB (a GABA analogue) and baclofen significantly promoted axonal regeneration of descending neurons after SCI. These data indicate that GABAergic signalling through GABAB receptors promotes the survival and regeneration of descending neurons after SCI. Finally, we used morpholinos against the gabab1 subunit to specifically knockdown the expression of the GABAB receptor in descending neurons. Long-term morpholino treatments caused a significant inhibition of axonal regeneration, which shows that endogenous GABA promotes axonal regeneration after a complete SCI in peer-reviewed)