The xylanase system of the filamentous fungus Hypocrea jecorina (Trichoderma reesei) consists of two specific xylanases, Xyn1 and Xyn2, which are simultaneously expressed during growth on xylan but respond differentially to low-molecular-weight inducers. Using in vivo footprinting analysis of xylan-induced and noninduced mycelia, we detected two adjacent nucleotide sequences (5-AGAA-3 on the noncoding strand and 5-GGGT AAATTGG-3, referred to as the xylanase-activating element [XAE], on the coding strand, respectively) to bind proteins. Among these, binding to the AGAA-box is only observed under noninduced conditions, whereas binding to XAE is constitutive. Electrophoretic mobility shift assay with heterologously expressed components of the H. jecorina Hap2/3/5 protein complex and the cellulase regulator Ace2 suggests that these two transactivators form the protein complex binding to XAE. H. jecorina transformants, containing correspondingly mutated versions of the xyn2 promoter fused to the Aspergillus niger goxA gene as a reporter, revealed that the elimination of protein binding to the AGAA-box resulted in a threefold increase in both basal and induced transcription, whereas elimination of Ace2 binding to its target in XAE completely eliminated transcription under both conditions. Destruction of the CCAAT-box by insertion of a point mutation prevents binding of the Hap2/3/5 complex in vitro and results in a slight increase in both basal and induced transcription. These data support a model of xyn2 regulation based on the interplay of Hap2/3/5, Ace2 and the AGAA-box binding repressor.