The current National Research Council (NRC) selenium (Se) requirement for the turkey is 0.2 μg Se/g diet. The sequencing of the turkey selenoproteome offers additional molecular biomarkers for assessment of Se status. To determine dietary Se requirements using selenoprotein transcript levels and enzyme activities, day-old male turkey poults were fed a Se-deficient diet supplemented with graded levels of Se (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0 μg Se/g diet) as selenite, and 12.5X the vitamin E requirement. Poults fed less than 0.05 μg Se/g diet had a significantly reduced rate of growth, indicating the Se requirement for growth in young male poults is 0.05 μg Se/g diet. Se deficiency decreased plasma GPX3 (glutathione peroxidase), liver GPX1, and liver GPX4 activities to 2, 3, and 7%, respectively, of Se-adequate levels. Increasing Se supplementation resulted in well-defined plateaus for all blood, liver and gizzard enzyme activities and mRNA levels, showing that these selenoprotein biomarkers could not be used as biomarkers for supernutritional-Se status. Using selenoenzyme activity, minimum Se requirements based on red blood cell GPX1, plasma GPX3, and pancreas and liver GPX1 activities were 0.29–0.33 μg Se/g diet. qPCR analyses using all 10 dietary Se treatments for all 24 selenoprotein transcripts (plus SEPHS1) in liver, gizzard, and pancreas found that only 4, 4, and 3 transcripts, respectively, were significantly down-regulated by Se deficiency and could be used as Se biomarkers. Only GPX3 and SELH mRNA were down regulated in all 3 tissues. For these transcripts, minimum Se requirements were 0.07–0.09 μg Se/g for liver, 0.06–0.15 μg Se/g for gizzard, and 0.13–0.18 μg Se/g for pancreas, all less than enzyme-based requirements. Panels based on multiple Se-regulated transcripts were effective in identifying Se deficiency. These results show that the NRC turkey dietary Se requirement should be raised to 0.3 μg Se/g diet.