Proline, an important amino acid, accumulates in many plant species. Besides its role in plant cell responses to environmental stresses, the potential biological functions of proline in growth and development are unclear. Here, we report cloning and functional characterization of the maize (Zea mays) classic mutant proline responding1 (pro1) gene. This gene encodes a D 1-pyrroline-5-carboxylate synthetase that catalyzes the biosynthesis of proline from glutamic acid. Loss of function of Pro1 significantly inhibits proline biosynthesis and decreases its accumulation in the pro1 mutant. Proline deficiency results in an increased level of uncharged tRNA pro AGG accumulation and triggers the phosphorylation of eukaryotic initiation factor 2a (eIF2a) in the pro1 mutant, leading to a general reduction in protein synthesis in this mutant. Proline deficiency also downregulates major cyclin genes at the transcriptional level, causing cell cycle arrest and suppression of cell proliferation. These processes are reversible when external proline is supplied to the mutant, suggesting that proline plays a regulatory role in the cell cycle transition. Together, the results demonstrate that proline plays an important role in the regulation of general protein synthesis and the cell cycle transition in plants. INTRODUCTION In maize (Zea mays), a series of seed mutants with a starchy endosperm have been identified, and the cause of the opa-que/floury kernel phenotype has been investigated through analyzing the functions of cloned genes. Previous studies suggested that most of the opaque and floury mutants (opa-que2, floury2, Mucronate, and Defective endosperm B30) involve genes that regulate zein synthesis, such as regulatory genes or structural genes for these storage proteins (Schmidt et al., 1987; Coleman et al., 1995; Gillikin et al., 1997; Kim et al., 2004, 2006). Downregulation of zein gene (a-, b-, d-, and g-zein genes) expression by RNA interference also reproduced an opaque phenotype (Segal et al., 2003; Wu and Messing, 2010). These results indicate that the opaque/floury phenotypes of opaque2 (o2), floury2 (fl2), Defective endo-sperm B30, and Mucronate mutants are caused by either quantitative or qualitative alterations in zein proteins. However , other opaque/floury mutants, such as o1, o5, and fl1, show no notable alterations in zein proteins (Holding et al.