Cone photoreceptor cells are wavelength-sensitive neurons in the retinas of vertebrate eyes and are responsible for color vision. The spatial distribution of these nerve cells is commonly referred to as the cone photoreceptor mosaic. By applying the principle of maximum entropy, we demonstrate the universality of retinal cone mosaics in vertebrate eyes by examining various species, namely, rodent, dog, monkey, human, fish, and bird. We introduce a parameter called retinal temperature, which is conserved across the retinas of vertebrates. The virial equation of state for two-dimensional cellular networks, known as Lemaître’s law, is also obtained as a special case of our formalism. We investigate the behavior of several artificially generated networks and the natural one of the retina concerning this universal, topological law.