To design a control strategy for iLeg, an exoskeleton robot developed for lower limb rehabilitation aiming at investigating the feasibility of integrating functional electrical stimulation (FES) with robot-based rehabilitation training, an FES-assisted training strategy combined with impedance control, has been proposed in this paper. Through impedance control, an active compliance of the robot is established, and the patient's voluntary effort to accomplish the training task is inspired. During the training process, the patient's related muscles are applied with FES which provides an extra assistance to the patient. The intensity of the FES is properly chosen in order to induce a desired active torque which is proportional to the voluntary effort extracted from the electromyography signals of the related muscles using back propagation neural networks. This kind of enhancement serves as a positive feedback which reminds the patient of the correct attempt to fulfill the desired motion. FES control is conducted by a combination of neural network-based feedforward controller and a PD feedback controller. Simulation conducted using Matlab and the experiment with a spinal cord injury subject and a healthy subject have shown satisfactory results which verify the feasibility of this control strategy.