At present, enzyme debridement preparation has shown a good curative effect on eschar removal of burn wounds. Keratinase has shown great potential in enzymatic debridement because of its good fibrin-degrading ability. In this study, the debridement of keratinase was examined by using a third degree burn wound model in rats. We observed the wound, and keratinase shortened the time of eschar dissolution after debridement. Histopathology and immunofluorescence staining showed that the eschar in the keratinase group became thinner, inflammatory cell infiltration in the wound increased, the fluorescence intensity of the macrophage surface marker CD68 increased, and the CD163/CD86 ratio increased. In bone marrow-derived macrophages (BMDMs), there was no significant difference in the activity of CCK-8 in cells in the keratinase group compared with the control group. The fluorescence intensity of the keratinase group was higher than that of the control group. At 12 h, the cell scratches were obviously closed. The number of migrated Transwell cells increased. Flow cytometry and immunofluorescence analysis showed increased expression of CD206 and Arg-1 and decreased expression of CD86 and iNOS. The gene expression of the Arg-1, iNOS and IL-10 was increased, as shown by qPCR. The secretion of IL-10 was increased and TNF-α was decreased, as shown by ELISA. We concluded that keratinase dissolution of eschar not only has a hydrolytic effect on eschar but may also affect immune regulation to enhance the migration and phagocytosis of macrophages, promote the polarization of macrophages, and further enhance the effect of eschar dissolution. Therefore, keratinase may have good prospects for the debridement of burn wounds.