As the demand for sustainable energy solutions grows, there is a critical requirement for continuous innovation to optimize the performance and safety of renewable energy systems (RESs). Closed-loop digital twins (CLDTs)—synchronized virtual replicas embedded with real-time data and control loops to mirror the behavior of physical systems—have emerged as a promising tool for achieving this goal. This paper presents a systematic literature review on the application of digital twin (DT) technology in the context of RESs with an emphasis on the impact of DTs on the efficiency, performance, and safety assurance of RESs. It explores the concept of CLDTs, highlighting their key functionalities and potential benefits for various renewable energy technologies. However, their effective implementation requires a structured approach to integrate observation, orientation, decision, and action (OODA) processes. This study presents a novel OODA framework specifically designed for CLDTs to systematically identify and manage their key components. These components include real-time monitoring, decision-making, and actuation. The comparison is carried out against the capabilities of DT utilizing the OODA framework. By analyzing the current literature, this review explores how DT empowers RESs with enhanced efficiency, reduced risks, and improved safety assurance.