Cloud detection sample generation algorithm for nighttime satellite imagery based on daytime data and machine learning application
Xiaohang Shi,
Yulong Fan,
Lin Sun
et al.
Abstract:Highly accurate nighttime cloud detection in satellite imagery is challenging due to the absence of visible to near-infrared (0.38–3 μm, VNI) data, which is critical for distinguishing clouds from other ground features. Fortunately, Machine learning (ML) techniques can more effectively leverage the limited wavelength information and show high-accuracy cloud detection based on vast sample volume. However, accurately distinguishing cloud pixels solely through thermal infrared bands (8–14 μm, TIR) is challenging,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.