2021
DOI: 10.3389/fmars.2021.699055
|View full text |Cite
|
Sign up to set email alerts
|

Cloud-Native Coastal Turbid Zone Detection Using Multi-Temporal Sentinel-2 Data on Google Earth Engine

Abstract: The lack of clarity in turbid coastal waters interferes with light attenuation and hinders remotely sensed studies in aquatic ecology such as benthic habitat mapping and bathymetry estimation. Although turbid water column corrections can be applied on regions with seasonal turbidity by performing multi-temporal analysis, different approaches are needed in regions where the water is constantly turbid or only exhibits subtle turbidity variations through time. This study aims to detect these turbid zones (TZs) in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 23 publications
0
4
0
2
Order By: Relevance
“…First, this technological component integrates and combines recent developments in multi‐temporal composition and scalability, optically deep water (areas with no emanating signal in the water surface from the seafloor) and turbidity masking (Pertiwi et al., 2021; Poursanidis et al., 2021; Thomas et al., 2021; Traganos, Aggarwal, et al., 2018; Traganos, Poursanidis, et al., 2018). Here, it used the 33 095 raw Sentinel‐2 L2A tiles ingested by GEE within the area of interest and filtered them for cloud coverage using the GEE filterMetadata function, retaining only tiles with less than 25% CLOUDY_PIXEL_PERCENTAGE, which halved the raw archive to 16 453 S2 tiles.…”
Section: Methodsmentioning
confidence: 99%
See 3 more Smart Citations
“…First, this technological component integrates and combines recent developments in multi‐temporal composition and scalability, optically deep water (areas with no emanating signal in the water surface from the seafloor) and turbidity masking (Pertiwi et al., 2021; Poursanidis et al., 2021; Thomas et al., 2021; Traganos, Aggarwal, et al., 2018; Traganos, Poursanidis, et al., 2018). Here, it used the 33 095 raw Sentinel‐2 L2A tiles ingested by GEE within the area of interest and filtered them for cloud coverage using the GEE filterMetadata function, retaining only tiles with less than 25% CLOUDY_PIXEL_PERCENTAGE, which halved the raw archive to 16 453 S2 tiles.…”
Section: Methodsmentioning
confidence: 99%
“…Second, the percentile composite is masked for land and optically deep water pixels utilizing a non‐parametric, highly adaptive algorithm (Donchyts et al., 2016) based on a combined Otsu‐based thresholding (Otsu, 1979) and Canny edge filter applied to the modified normalized difference water index, MNDWI (Pertiwi et al., 2021; Thomas et al., 2021; Xu, 2006). The MNDWI index integrated the green (B3; 560 nm) and shortwave infrared (B11; 1610 nm) bands of the Sentinel‐2 L2A percentile composite.…”
Section: Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Pengindraan jauh memiliki kemampuan yang baik, meliput area yang luas dan sulit dijangkau sehingga pengambilan data lebih efektif dan efisien (Munthe et al, 2007;Katlane et al, 2020). Beberapa algoritma yang dikembangkan untuk mengestimasi TSS dari citra satelit umumnya bersifat lokal sehingga perlu dikembangkan untuk memperoleh algoritma yang sesuai pada area penelitian ini (Budiman, 2005;Parwati & Purwanto, 2014;Heltria et al, 2021;Pertiwi et al, 2021;Selamat & Ukkas, 2020).…”
Section: Pendahuluanunclassified