Hybrid services use different protocols on various networks, such as WIFI networks, Bluetooth networks, 5G communications systems, and wireless sensor networks. Hybrid service compositions can be varied, representing an effective method of integrating into wireless scenarios context-aware applications that can sense mobility via changes in user location and combining services to support target functions. In this article, improved particle swarm optimization is introduced into the quality service evaluation of dynamic service composition to meet the mobility requirements of hybrid networks. First, this work classifies hybrid services into different task groups to generate candidate sets and then interface matching is used to compare the operations of candidate services with user requirements to select the appropriate services. Second, the service composition is determined by the particle swarm optimization simulation process, which aims to identify an optimal plan based on the calculated value from quality of service. Third, considering a change of service repository, when the quality of a composite service is lower than a predefined threshold, the local greedy algorithm and global reconfiguration method are adopted to dynamically restructure composite services. Finally, a set of experiments is conducted to demonstrate the effectiveness of the proposed method for determining the dynamic service composition, particularly when the scale of hybrid services is large. The method provides a technical reference for engineering practice that will fulfill mobile computing needs.