Proceedings of the 3rd International Conference on Applications in Information Technology 2018
DOI: 10.1145/3274856.3274862
|View full text |Cite
|
Sign up to set email alerts
|

Cluster Analysis to Estimate the Difficulty of Programming Problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
1
1

Relationship

3
6

Authors

Journals

citations
Cited by 18 publications
(6 citation statements)
references
References 12 publications
0
4
0
2
Order By: Relevance
“…Saito and Watanobe (2020) proposed a learning path recommendation system based on a learner's ability charts by means of an RNN. Intisar and Watanobe (2018a) proposed a method for the classification of OJ programmers based on rule extraction from a self-organising feature map, cluster analysis to estimate the difficulty of programming problems (Intisar and Watanobe, 2018b), and classification of programming problems based on topic modelling (Intisar et al, 2019). Teshima and Watanobe (2018) presented bug detection methods for the feedback system of an OJ system.…”
Section: Related Researchmentioning
confidence: 99%
“…Saito and Watanobe (2020) proposed a learning path recommendation system based on a learner's ability charts by means of an RNN. Intisar and Watanobe (2018a) proposed a method for the classification of OJ programmers based on rule extraction from a self-organising feature map, cluster analysis to estimate the difficulty of programming problems (Intisar and Watanobe, 2018b), and classification of programming problems based on topic modelling (Intisar et al, 2019). Teshima and Watanobe (2018) presented bug detection methods for the feedback system of an OJ system.…”
Section: Related Researchmentioning
confidence: 99%
“…Jing et al [18] introduced a vocabulary learning model that calculates the incorrect classification cost for the prediction of source code defects. Various ML approaches [19][20][21] have been proposed for classification, recommendation, and estimation problems. Alreshedy et al [22] presented an ML-based language model for classifying source code snippets based on the programming language.…”
Section: Background and Literature Reviewmentioning
confidence: 99%
“…Aprender programação requer muita prática, em grande parte através de questões de codificação [1,10,15,21,23,29,30,34,44]. Para um instrutor, a correção manual das soluções elaboradas pelos estudantes, além de desgastante, é por vezes demorada [2,9,29,30].…”
Section: Introductionunclassified
“…Estas não dispõem de informações que possam indicar o quão fácil será sua resolução por um estudante [10,29]. Logo, para que o sorteio aleatório de questões seja equânime, faz-se necessário um mecanismo capaz de classificar a facilidade de novas questões antes de serem apresentadas aos estudantes, utilizando para isso somente os dados disponíveis no momento de cadastro [15,44], ou seja, somente as informações disponibilizadas pelo instrutor.…”
Section: Introductionunclassified