2020
DOI: 10.20944/preprints202001.0387.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Clustered Based Prediction for Batteries in the Data Centers

Abstract: This paper proposes an ARIMA approach to battery health forecasting with accuracy improvement by K shape-based clustered predictors. The health prediction of the battery pack is an important function of a battery management system in data centers. Accurate forecasting of battery life turns out to be very difficult without failure data to train a good forecasting model in real life. The conventional ARIMA model is compared with total and clustered predictors for battery health forecasting. Results show that the… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?