<b><i>Introduction:</i></b> Diabetes mellitus (DM)-induced testicular damage is characterized by abnormal apoptosis of spermatogenic cells. Here, we clarified the roles and the molecular mechanism of microRNA (miR)-27b-3p in high glucose (HG)-induced spermatogenic cell damage. <b><i>Methods:</i></b> GC-1 spg cells were treated with 30 mmol/L glucose for 24 h. Cell viability was assessed by 2.3 3-(4, 5-dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide (MTT) assay. And, levels of O-linked N-acetylglucosamine (OGT), apoptosis-related proteins, and autophagy-related proteins were evaluated using Western blot. Levels of tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and UDP-N-acetylglucosamine (UDP-GlcNAc) were assessed by enzyme linked immunosorbent (ELISA) assay. Levels of reactive oxygen species (ROS), malonic dialdehyde (MDA) and activity of superoxide dismutase (SOD) in cells were determined using kits. Cell apoptosis was determined using flow cytometry assay. Besides, dual luciferase reporter assay was employed to verify the binding relationship between miR-27b-3p and glutamine-fructose-6-phosphate transaminase 1 (Gfpt1). <b><i>Results:</i></b> miR-27b-3p was markedly downregulated in HG-treated GC-1 spg cells. HG treatment caused decreased cell viability, increased oxidative stress and inflammation, and induced autophagy and apoptosis, which were abolished by miR-27b-3p overexpression. miR-27b-3p suppressed the activation of hexosamine biosynthetic pathway (HBP) signaling in HG-treated spermatogenic cells. miR-27b-3p directly bound to Gfpt1 and negatively regulated its expression. <b><i>Conclusion:</i></b> miR-27b-3p could improve HG-induced spermatogenic cell damage via regulating Gfpt1/HBP signaling, providing a new treatment strategy for the treatment of DM-induced testicular damage.