Proteins are promising precursors to be used in production of sustainable materials with properties resembling plastics, although protein modification or functionalization is often required to obtain suitable product characteristics. Here, effects of protein modification were evaluated by crosslinking behavior using high-performance liquid chromatography (HPLC), secondary structure using infrared spectroscopy (IR), liquid imbibition and uptake, and tensile properties of six crambe protein isolates modified in solution before thermal pressing. The results showed that a basic pH (10), especially when combined with the commonly used, although moderately toxic, crosslinking agent glutaraldehyde (GA), resulted in a decrease in crosslinking in unpressed samples, as compared to acidic pH (4) samples. After pressing, a more crosslinked protein matrix with an increase in βsheets was obtained in basic samples compared to acidic samples, mainly due to the formation of disulfide bonds, which led to an increase in tensile strength, and liquid uptake with less material resolved. A treatment of pH 10 + GA, combined either with a heat or citric acid treatment, did not increase crosslinking or improve the properties in pressed samples, as compared to pH 4 samples. Fenton treatment at pH 7.5 resulted in a similar amount of crosslinking as the pH 10 + GA treatment, although with a higher degree of peptide/irreversible bonds. The strong bond formation resulted in lack of opportunities to disintegrate the protein network by all extraction solutions tested (even for 6 M urea + 1% sodium dodecyl sulfate + 1% dithiothreitol). Thus, the highest crosslinking and best properties of the material produced from crambe protein isolates were obtained by pH 10 + GA and pH 7.5 + Fenton, where Fenton is a greener and more sustainable solution than GA. Therefore, chemical modification of crambe protein isolates is effecting both sustainability and crosslinking behavior, which might have an effect on product suitability.