Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
RESTful web services are often used for building a wide variety of enterprise applications. The diversity and increased number of applications using RESTful APIs means that increasing amounts of resources are spent developing and testing these systems. Automation in test data generation provides a useful way of generating test data in a fast and efficient manner. However, automated test generation often results in large test suites that are hard to evaluate and investigate manually. This article proposes a taxonomy of the faults we have found using search-based software testing techniques applied on RESTful APIs. The taxonomy is a first step in understanding, analyzing, and ultimately fixing software faults in web services and enterprise applications. We propose to apply a density-based clustering algorithm to the test cases evolved during the search to allow a better separation between different groups of faults. This is needed to enable engineers to highlight and focus on the most serious faults. Tests were automatically generated for a set of eight case studies, seven open-source and one industrial. The test cases generated during the search are clustered based on the reported last executed line and based on the error messages returned, when such error messages were available. The tests were manually evaluated to determine their root causes and to obtain additional information. The article presents a taxonomy of the faults found based on the manual analysis of 415 faults in the eight case studies and proposes a method to support the classification using clustering of the resulting test cases.
RESTful web services are often used for building a wide variety of enterprise applications. The diversity and increased number of applications using RESTful APIs means that increasing amounts of resources are spent developing and testing these systems. Automation in test data generation provides a useful way of generating test data in a fast and efficient manner. However, automated test generation often results in large test suites that are hard to evaluate and investigate manually. This article proposes a taxonomy of the faults we have found using search-based software testing techniques applied on RESTful APIs. The taxonomy is a first step in understanding, analyzing, and ultimately fixing software faults in web services and enterprise applications. We propose to apply a density-based clustering algorithm to the test cases evolved during the search to allow a better separation between different groups of faults. This is needed to enable engineers to highlight and focus on the most serious faults. Tests were automatically generated for a set of eight case studies, seven open-source and one industrial. The test cases generated during the search are clustered based on the reported last executed line and based on the error messages returned, when such error messages were available. The tests were manually evaluated to determine their root causes and to obtain additional information. The article presents a taxonomy of the faults found based on the manual analysis of 415 faults in the eight case studies and proposes a method to support the classification using clustering of the resulting test cases.
Over the last decade, hardware-in-the-loop (HIL) simulation has been established as a safe, efficient, reliable, and flexible method for performing real-time simulation. Furthermore, in the automotive sector, the HIL system has been recommended in the ISO 26262 standard as a powerful platform for performing realistic simulation during system integration testing. As a result of performing HIL black-box tests, the results of executing test cases (TCs) are reported as pass/fail without determining the nature and root causes of the underlying failures. The conventional analysis process of the failed TCs relies on expert knowledge. The higher the number of failed TCs, the higher the cost of manual analysis in terms of time and effort. In light of the shortcomings of existing methodologies, this study presents a novel intelligent framework capable of analyzing failed TCs without the need for expert knowledge or code access. To this end, a convolutional auto-encoder-based deep-learning approach is proposed to extract representative features from the textual description of the failed TCs. Furthermore, k-means-based clustering is used to categorize the extracted features according to their respective failure classes. To illustrate the effectiveness and validate the performance of the proposed method, a virtual test drive with real-time HIL simulation is presented as a case study. The proposed model exhibits superior clustering performance compared to other standalone k-means algorithms, as demonstrated by the David Bouldin Index (DBI) and accuracy values of 0.5184 and 94.33%, respectively. Furthermore, the proposed model shows a significant advantage in terms of feature extraction and clustering performance compared to the current state-of-the-art fault-analysis method. The proposed approach not only supports the validation process and improves the safety and reliability of the systems but also reduces the costs of manual analysis in terms of time and effort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.