Gempa bumi adalah fenomena alam yang sering terjadi di Indonesia, termasuk di Provinsi Papua. Untuk mengurangi risiko dampak gempa bumi, diperlukan analisis untuk mengidentifikasi daerah-daerah yang rawan terha dap gempa bumi. Penelitian ini bertujuan untuk menganalisis klasterisasi kerawanan gempa di Provinsi Papua menggunakan algoritma Invasive Weed Optimization (IWO). Metode ini dipilih karena dapat menghasilkan klaster yang lebih baik dibandingkan dengan algoritma klasterisasi lainnya. Data yang digunakan adalah data kejadian gempa di Provinsi Papua yang terdiri dari atribut latitude, longitude, magnitude, dan depth mulai tahun 2018 sampai Februari 2023 yang diperoleh dari website Badan Geologi Amerika Serikat yaitu United States Geological Survey (USGS). Tahapan penelitian meliputi normalisasi data, klasterisasi menggunakan algoritma IWO, dan evaluasi hasil klasterisasi menggunakan SSE dan F-Measure. Jumlah klaster terbaik yang dihasilkan oleh metode Elbow yaitu sebanyak enam klaster kerawanan gempa di Provinsi Papua, yang diberi label Sangat Tidak Rawan, Tidak Rawan, Kurang Rawan, Cukup Rawan, Rawan dan Sangat Rawan. Dengan nilai parameter sinitial sebesar 8, algoritma IWO menghasilkan nilai SSE dan F-Measure terkecil dibanding nilai parameter sinitial lainnya, yaitu masing-masing sebesar 19.1002 dan 0.5137. Evaluasi hasil klasterisasi menggunakan SSE menunjukkan nilai yang baik dari 30 kali percobaan, dengan rata-rata SSE sebesar 19.218, lebih kecil dibanding dengan rata-rata SSE hasil metode k-Means dan DBSCAN yaitu masing-masing sebesar 19.307 dan 59.910.