Abstract:Choosing appropriate hyperparameters for unsupervised clustering algorithms could be an optimal way for the study of long-standing challenges with data, which we tackle while adapting clustering algorithms for immune disorder diagnoses. We compare the potential ability of unsupervised clustering algorithms to detect disease flares and remission periods through analysis of laboratory data from systemic lupus erythematosus (SLE) patients records with different hyperparameter choices. To determine which clusterin… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.