Clustering performance using k-modes with modified entropy measure for breast cancer
Nurshazwani Muhamad Mahfuz,
Heru Suhartanto,
Kusmardi Kusmardi
et al.
Abstract:<span>Breast cancer is a serious disease that requires data analysis for diagnosis and treatment. Clustering is a data mining technique that is often used in breast cancer research to assess the level of malignancy at an early stage. However, clustering categorical data can be challenging because different levels in categorical variables can impact the clustering process. This research proposes a modified entropy measure (MEM) to enhance clustering performance. MEM aims to address the issue of distance-b… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.