Analyzing data is a challenging task nowadays because the size of data affects results of the analysis. This is because every application can generate data of massive amount. Clustering techniques are key techniques to analyze the massive amount of data. It is a simple way to group similar type data in clusters. The key examples of clustering algorithms are k-means, kmedoids, c-means, hierarchical and DBSCAN. The kmeans and DBSCAN are the scalable algorithms but again it needs to be improved because massive data hampers the performance with respect to cluster quality and efficiency of these algorithms. For these algorithms, user intervention is needed to provide appropriate parameters as an input. For these reasons, this paper presents modified and efficient clustering algorithm. This enhances cluster's quality and makes clusters more cohesive using domain knowledge, spectral analysis, and split-merge-refine techniques. Also, this algorithm takes care to minimizing empty clusters. So far no algorithm has integrated these all requirements that proposed algorithm does just as a single algorithm. It also automatically predicts the value of k and initial centroids to have minimum user intervention with the algorithm. The performance of this algorithm is compared with standard clustering algorithms on various small to large data sets. The comparison is with respect to a number of records and dimensions of data sets using clustering accuracy, running time, and various clusters validly measures. From the obtained results, it is proved that performance of proposed algorithm is increased with respect to efficiency and quality than the existing algorithms.