2021
DOI: 10.3906/elk-2105-44
|View full text |Cite
|
Sign up to set email alerts
|

Clustering with density based initialization and Bhattacharyya based merging

Abstract: Centroid based clustering approaches, such as k-means, are relatively fast but inaccurate for arbitrary shape clusters. Fuzzy c-means with Mahalanobis distance can accurately identify clusters if data set can be modelled by a mixture of Gaussian distributions. However, they require number of clusters apriori and a bad initialization can cause poor results. Density based clustering methods, such as DBSCAN, overcome these disadvantages. However, they may perform poorly when the data set is imbalanced. This paper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?