Observationof calcium signaling in platelets -blood cells designed to be involved in stopping bleeding and forming blood clots -is an important part of fundamental research in hemostasis. However, such a study is possible only with the use of calcium fluorophores -small molecules that penetrate the platelet membrane due to their hydrophobic -AM part, which is then hydrolyzed by cytosol esterases. In this work, we consider the phenomenon of inhomogeneous loading of calcium fluorophores into platelets.We used platelets from healthy adult donors loaded with various fluorescent probes (CalBryte590, DiOC6 (3), Fura Red, Fluo-4 and CellTracker Violet BMQC) and immobilized on antibodies to CD31 in parallel plane flow chambers. Total internal reflection fluorescence (TIRF) microscopy was used for observations.We demonstrated that all studied probes are loaded heterogeneously, with 30% platelets being loaded with a probe 2-6 times higher than the population median value. Using the CalBryte590 probe as an example, we have shown that a decrease in the incubation temperature, the addition of Pluronic 127 to the incubation medium, or membrane cholesterol depletion significantly reduces the heterogeneity of the probe distribution in the population. By looking at platelet activation from the surface, we have shown that the probability of experiencing strong activation, as measured by the intensity of calcium oscillations, correlates with the amount of probe in the platelet.Thus, we conclude that the type of fluorophore used and the conditions of its loading into platelets can significantly affect the results of experiments on the observation of calcium signaling in platelets.