Novel methylenedioxyphenyl-based amides, especially N-(4-methoxybenzyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (MDC) and N-(3-acetylphenyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (ADC), potential cardiovascular preventive agents, are successfully synthesized, and their chemical structures are verified by 1 H and 13 C NMR, Fourier transform infrared (FT-IR), high-resolution mass spectrometry (HRMS), and single-crystal Xray diffraction (SC-XRD) analyses. Data obtained from SC-XRD reveal that MDC and ADC are both monoclinic molecules with Z = 2 and 4, respectively. From density functional theory (DFT) calculations, 3.54 and 3.96 eV are the energy gaps of the optimized MDC and ADC structures, respectively. MDC and ADC exhibit an electrophilicity index value of more than 1.5 eV, suggesting that they can act as an electrophile, facilitating bond formation with biomolecules. Hirshfeld surface analysis demonstrates that more than 25% of atomic interactions in both MDC and ADC are from H•••H interactions. Based on pharmacokinetic predictions, MDC and ADC exhibit drug-like properties, and molecular docking simulations revealed favorable interactions with active site pockets. Both MDC and ADC achieved higher docking scores of −7.74 and −7.79 kcal/mol, respectively, with myeloperoxidase (MPO) protein. From docking results, MPO was found to be most favorable followed by dipeptidyl peptidase-4 (DPP-4) and α-glucosidase (α-GD). Antioxidant, anti-inflammatory, and in vitro enzymatic studies of MDC and ADC indicate that MDC is more selective toward MPO and more potent than ADC. The application of MDC to inhibit myeloperoxidase could be ascertained to reduce the cardiovascular risk factor. This can be supported from the results of computational docking (based on hydrogen bonding and docking score), in vitro antioxidant and anti-inflammatory properties, and MPO enzymatic inhibition (based on the percentage of inhibition and IC 50 values).