In this paper, the local convergence analysis of the family of Kung-Traub's two-point method and the convergence ball for this family are obtained and the dynamical behavior on quadratic and cubic polynomials of the resulting family is studied. We use complex dynamic tools to analyze their stability and show that the region of stable members of this family is vast. Numerical examples are also presented in this study. This method is compared with several widely used solution methods by solving test problems from different chemical engineering application areas, e.g. Planck's radiation law problem, natch distillation at infinite reflux, van der Waal's equation, air gap between two parallel plates and flow in a smooth pipe, in order to check the applicability and effectiveness of our proposed methods.