2022
DOI: 10.1155/2022/6399730
|View full text |Cite|
|
Sign up to set email alerts
|

[Retracted] CNN‐Based Cross‐Modal Residual Network for Image Synthesis

Abstract: This study attempts to address the issue that present cross-modal image synthesis algorithms do not capture the spatial and structural information of human tissues effectively. As a consequence, the resulting photos include flaws including fuzzy edges and a poor signal-to-noise ratio. The authors offer a cross-sectional technique that combines residual modules with generative adversarial networks. The approach incorporates an enhanced residual initial module and attention mechanism into the generator network, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 17 publications
(24 reference statements)
0
1
0
Order By: Relevance
“…This article has been retracted by Hindawi, as publisher, following an investigation undertaken by the publisher [ 1 ]. This investigation has uncovered evidence of systematic manipulation of the publication and peer-review process.…”
mentioning
confidence: 99%
“…This article has been retracted by Hindawi, as publisher, following an investigation undertaken by the publisher [ 1 ]. This investigation has uncovered evidence of systematic manipulation of the publication and peer-review process.…”
mentioning
confidence: 99%