The timely and accurate mapping and monitoring of mine tailings dams is crucial to the improvement of management practices by decision makers and to the prevention of disasters caused by failures of these dams. Due to the complex topography, varying geomorphological characteristics, and the diversity of ore types and mining activities, as well as the range of scales and production processes involved, as they appear in remote sensing imagery, tailings dams vary in terms of their scale, color, shape, and surrounding background. The application of high-resolution satellite imagery for automatic detection of tailings dams at large spatial scales has been barely reported. In this study, a target detection method based on deep learning was developed for identifying the locations of tailings ponds and obtaining their geographical distribution from high-resolution satellite imagery automatically. Training samples were produced based on the characteristics of tailings ponds in satellite images. According to the sample characteristics, the Single Shot Multibox Detector (SSD) model was fine-tuned during model training. The results showed that a detection accuracy of 90.2% and a recall rate of 88.7% could be obtained. Based on the optimized SSD model, 2221 tailing ponds were extracted from Gaofen-1 high resolution imagery in the Jing–Jin–Ji region in northern China. In this region, the majority of tailings ponds are located at high altitudes in remote mountainous areas. At the city level, the tailings ponds were found to be located mainly in Chengde, Tangshan, and Zhangjiakou. The results prove that the deep learning method is very effective at detecting complex land-cover features from remote sensing images.