The booming demand for energy storage has driven the rapid development of energy storage devices such as supercapacitors, and the research on high-performance electrode materials, a key component of supercapacitors, has gained tremendous attention. In this research, phenolic resin-based multi-porous carbon nanofibers have been prepared by electrospinning, curing, carbonization and activation and then employed as advanced electrode materials in supercapacitors. We demonstrate that the material is nano-scale continuous fiber, and its surface has pore distribution of different sizes. It delivers a high specific capacitance of 242 F g−1 at a current density of 0.2 A g−1 and maintains 148 F g−1 even at a high current density of 20 A g−1. Moreover, it shows almost no capacitance decay at a current density of 2 A g−1 over 1000 cycles, demonstrating its great potential as high-performance electrodes in supercapacitors.