Pentanoic esters are a new class of biofuels (additives) and are typically produced from biomass-derived levulinic acid/esters via hydrogenation-cyclization/ring-opening/ hydrogenation three-step transformations. Here, a one-step and atom-economic alkoxycarbonylation route is developed to produce pentanoic esters from widely available 1-butene. Based on the screening of 21 monophosphine and 26 diphosphine ligands, a Pd/ diphosphine ligand (bis(2-diphenylphosphinophenyl) ether, DPEphos) system gives 91% yield of linear and branched ethyl pentanoate (78/22 ratio) with a turnover number (TON) up to 26100 and demonstrates outstanding recycle potential. The apparent activation energy (E a ) of 1-butene alkoxycarbonylation in the presence of this catalytic system was estimated to be 89.4 kJ/mol via kinetic measurements. More importantly, homogeneously blending 10 vol % of the resultant esters in pure diesel can improve the low-temperature fluidity and pumpability of diesel and decrease the emission of exhaust pollutants of diesel without affecting the power performance of diesel engines. Compared with pure diesel, the CO, NO x , HC, and soot emission of blend diesel at 2500 rpm are reduced by 28%, 9%, 6%, and 42%, respectively. This work provides a promising route to produce high-performance fuel additive and simultaneously broadens the comprehensive utilization of C4 olefin.