Let [Formula: see text] be a commutative quasi-local ring (with identity [Formula: see text]), and let [Formula: see text] be an [Formula: see text]-ideal such that [Formula: see text]. For [Formula: see text] an Artinian [Formula: see text]-module of N-dimension [Formula: see text], we introduce the notion of Hilbert-coefficients of [Formula: see text] relative to [Formula: see text] and give several properties. When [Formula: see text] is a co-Cohen–Macaulay [Formula: see text]-module, we establish the Northcott’s inequality for Artinian modules. As applications, we show some formulas involving the Hilbert coefficients and we investigate the behavior of these multiplicities when the module is the local cohomology module.