In this study, it was aimed to investigate octavinyl‐polyhedral oligomeric silsesquioxane (OV‐POSS) incorporation into natural rubber (NR)/butadiene rubber (BR) elastomer blends as a potential compatibilizer. The effects of OV‐POSS loading levels on the thermal, mechanical, morphological, and dynamic‐mechanical properties of elastomer blends were explored. Fourier‐Transform Infrared Spectrometer (FTIR), Temperature Scanning Stress Relaxation (TSSR), and Differential Scanning Calorimetry (DSC) results revealed the conceivable effect of OV‐POSS nanoparticles in the vulcanization through reacting with sulfur and/or elastomers. Scanning Electron Microscope (SEM), X‐Ray Diffraction (XRD), and tensile test measurements supported the improvement of mechanical properties due to homogeneous dispersion at low loading levels. On the other hand, high amount of OV‐POSS incorporation (7 and 10 phr) resulted in a decrease in mechanical properties, owing to the agglomeration of nanoparticles. According to contact angle and Dynamic mechanical analysis (DMA) results, it could be concluded that OV‐POSS nanoparticles were localized at the interface of the elastomers and enabled the compatibilization of immiscible NR/BR blends.