In this work, we compared the gas sensing behaviors of pristine and decorated multi-walled carbon nanotubes (MWCNTs) and examined the response behavior of bare and adorned MWCNTs in gas sensing. According to the data, the decorated response was 144%, which is higher than the bare CNT response of 117% in terms of the sensing response. The RF-sputtering method is used to decorate the carbon nanotubes by pure Indium (In) metal nanoparticles. Every measurement was performed in a temperature-controlled environment. Tests of the entire procedure were conducted at a 10 ppm concentration of ammonia gas. We have observed the quick reaction time (1−10 s) in pristine and (1−7 s) in decorated MWCNTs. The response was obtained 117% for the pristine and 144, 115, and 73% for the second (3 min decoration), third (6 min decoration), and fourth (9 min decoration) MWCNTs, respectively. The as-prepared pristine samples and all the decorated sensors had sensitivity values of 0.45, 0.50, 0.51, and 0.57 for time intervals of 0, 3, 6, and 9 min, respectively. It amounted to 45% for the pure and 50, 51, and 57% for the remaining as-prepared decorated sensors, respectively. Based on the measured sensor response graph, a recovery of between 80 and 85% was achieved. For a period of 10 days at a constant concentration, the stability was also assessed and we have analyzed the structural, electrical, and elemental composition of the prepared CNTs by FESEM, EDX, Raman spectroscopy, FTIR, and XRD.