Environmental perturbations have large effects on both organismal and cellular traits, including gene expression, but the extent to which the environment affects RNA processing remains largely uncharacterized. Recent studies have identified a large number of genetic variants associated with variation in RNA processing that also have an important role in complex traits; yet we do not know in which contexts the different underlying isoforms are used. Here, we comprehensively characterized changes in RNA processing events across 89 environments in five human cell types and identified 15,300 event shifts (FDR = 15%) comprised of eight event types in over 4,000 genes. Many of these changes occur consistently in the same direction across conditions, indicative of global regulation by trans factors. Accordingly, we demonstrate that environmental modulation of splicing factor binding predicts shifts in intron retention, and that binding of transcription factors predicts shifts in AFE usage in response to specific treatments. We validated the mechanism hypothesized for AFE in two independent datasets. Using ATAC-seq, we found altered binding of 64 factors in response to selenium at sites of AFE shift, including ELF2 and other factors in the ETS family. We also performed AFE QTL mapping in 373 individuals and found an enrichment for SNPs predicted to disrupt binding of the ELF2 factor. Together, these results demonstrate that RNA processing is dramatically changed in response to environmental perturbations through specific mechanisms regulated by trans factors. 1 peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/119974 doi: bioRxiv preprint first posted online Mar. 24, 2017;
Author SummaryChanges in a cell's environment and genetic variation have been shown to impact gene expression. Here, we demonstrate that environmental perturbations also lead to extensive changes in alternative RNA processing across a large number of cellular environments that we investigated. These changes often occur in a non-random manner. For example, many treatments lead to increased intron retention and usage of the downstream first exon. We also show that the changes to first exon usage are likely dependent on changes in transcription factor binding. We provide support for this hypothesis by considering how first exon usage is affected by disruption of binding due to treatment with selenium. We further validate the role of a specific factor by considering the effect of genetic variation in its binding sites on first exon usage. These results help to shed light on the vast number of changes that occur in response to environmental stimuli and will likely aid in understanding the impact of compounds to which we are daily exposed.