Terrestrial gastropods have a lens‐bearing eye on the tip of their tentacles. There are two morphologically distinct photoreceptors, called Type‐I and Type‐II photoreceptors, in the retina. Type‐I photoreceptors are equipped with highly developed photoreceptive microvilli in their outer rhabdomeric segment, whereas Type‐II photoreceptors have short and fewer microvilli. Although both types of photoreceptors send afferent projections directly to the brain, their destinations in the brain, called optic neuropiles, have not been sufficiently investigated. Our recent studies revealed that there are commissural fibers in the cerebral ganglia that transmit photic information acquired by bilateral eyes. Moreover, some of the retinal photoreceptors are connected by gap junctions to the photosensitive brain neurons, suggesting the functional interaction of the photic information between the eye and brain photoreceptors, as well as between bilateral eyes. However, it has not been clarified which type of retinal photoreceptors send commissural projections to the contralateral hemiganglion nor interact with the brain photoreceptors. In the present study, we demonstrated by molecular histological analyses and tracer injections that (1) Type‐I and Type‐II photoreceptors send glutamatergic afferent projections to the medial and lateral lobes of the ipsilateral optic neuropile, respectively, (2) direct synaptic interaction between bilateral optic nerves occurs in the medial lobe of the optic neuropile, and (3) brain photosensory neurons form gap junctions with the medial lobe of the contralateral optic neuropile. These results reveal an ordered pattern of afferent projections from the retina and provide insight into the different functional roles of retinal photoreceptors.