Cancer stem-like cells (SLC) resist conventional therapies, necessitating searches for SLC-specific targets. We established that cyclo-oxygenase(COX)-2 expression promotes human breast cancer progression by activation of the prostaglandin(PG)E-2 receptor EP4. Present study revealed that COX-2 induces SLCs by EP4-mediated NOTCH/WNT signaling. Ectopic COX-2 over-expression in MCF-7 and SKBR-3 cell lines resulted in: increased migration/invasion/proliferation, epithelialmesenchymal transition (EMT), elevated SLCs (spheroid formation), increased ALDH activity and colocalization of COX-2 and SLC markers (ALDH1A, CD44, b-Catenin, NANOG, OCT3/4, SOX-2) in spheroids. These changes were reversed with COX-2-inhibitor or EP4-antagonist (EP4A), indicating dependence on COX-2/EP4 activities. COX-2 over-expression or EP4-agonist treatments of COX-2-low cells caused up-regulation of NOTCH/WNT genes, blocked with PI3K/AKT inhibitors. NOTCH/WNT inhibitors also blocked COX-2/EP4 induced SLC induction. Microarray analysis showed up-regulation of numerous SLC-regulatory and EMT-associated genes. MCF-7-COX-2 cells showed increased mammary tumorigenicity and spontaneous multiorgan metastases in NOD/ SCID/IL-2Rc-null mice for successive generations with limiting cell inocula. These tumors showed up-regulation of VEGF-A/C/D, Vimentin and phospho-AKT, down-regulation of E-Cadherin and enrichment of SLC marker positive and spheroid forming cells. MCF-7-COX-2 cells also showed increased lung colonization in NOD/SCID/GUSB-null mice, an effect reversed with EP4-knockdown or EP4A treatment of the MCF-7-COX-2 cells. COX-2/EP4/ALDH1A mRNA expression in human breast cancer tissues were highly correlated with one other, more marked in progressive stage of disease. In situ immunostaining of human breast tumor tissues revealed colocalization of SLC markers with COX-2, supporting COX-2 inducing SLCs. High COX-2/EP4 mRNA expression was linked with reduced survival. Thus, EP4 represents a novel SLC-ablative target in human breast cancer. STEM CELLS 2016;34:2290-2305
SIGNIFICANCE STATEMENTThis study presents novel mechanistic findings that cyclo-oxygenase (COX)-2 induces stem-like cells (SLC) in human breast cancer by activation of the prostaglandin E-2 receptor EP4 leading to up-regulation of NOTCH/WNT via PI3K/AKT signaling pathways. COX-2 induced SLC properties resulting from EP4/PI3K/AKT activation were confirmed with mammary site transplants and lung colonization of COX-2 over-expressing cells in immune deficient mice, showing multi-organ metastasis. In human breast cancer tissues, (a) SLC markers were localized mostly to COX-21 cells; (b) COX-2/EP4/ALDH1A mRNAs were highly correlated with one another; and (c) high COX-2/EP4 expression were associated with reduced survival. We suggest that EP4 antagonist, which spare cardio-protective prostanoids, are better suited than COX-2 inhibitors for SLCreduction in this disease.