The realization of commercialization of proton electrolyte membrane water splitting technology significantly depends on the anodic electrocatalyst working at a high potential and strong acidic conditions requiring superior oxygen evolution reaction activity and stability. In this work, we devise the construction of ultrasmall Pd@Ir core−shell nanoparticles (5 nm) with atomic layer Ir (3 atomic layers) on carbon nanotubes (Pd@Ir/CNT) as an exceptional bifunctional electrocatalyst in acidic water splitting. Due to the core−shell structure, strain generated at heterointerfaces leads to an upshifted d band center of Ir atoms contributing to a 62-fold better mass activity at 1.63 V vs RHE than commercial IrO 2 ; besides, the electronic hybridization suppresses the electrochemical dissolution of Ir; as a result, robust stability is also achieved. In hydrogen evolution reaction catalysis, Pd@Ir/CNT exhibits a 3.7 times higher mass activity than Pt/C. Furthermore, only 1.7 V is required to reach a water splitting current density of 100 mA cm −2 , 251 mV lower than that of Pt/ C−IrO 2 , indicating its superiority in acidic water splitting.