Poor survival and restricted function of transplanted stem cells are regarded as limiting their efficacy in wound recovery greatly. Consequently, it is necessary to identify innovative therapeutic strategies to solve these issues. Firstly, the biological effect of PF-127 hydrogel alone and in combination with SAP on the survival, and migration of cultured HUCMSCs was assessed by cell viability, apoptosis, and scratch wound assays. S. aureus and E. coli were used to evaluate the antibacterial activity of PF-127 plus SAP combination. Further, the ability of HUCMSCs-conditioned medium (HUCMSCs-CM) to promote the angiogenesis and migration of human umbilical vein endothelial cells (HUVECs) in vitro was evaluated using tube formation and transwell migration assays. Finally, the HUCMSCs embedded in PF-127 plus SAP scaffold were administered onto mice’s excisional cutaneous wound bed. Histological and immunohistochemical analyses were employed to investigate the wound healing capacity as well as cellular responses of PF-127/HUCMSCs/SAP hydrogel. PF-127 showed cytotoxicity on HUCMSCs, whereas the addition of SAP significantly promoted cell viability and alleviated apoptosis of HUCMSCs encapsulated in PF-127 hydrogel in vitro. SAP supplementation substantially abrogated the inhibiting effect of PF-127 on the migration of HUCMSCs in vitro. The combination of PF-127 and SAP exerted an obvious bacteriostatic function on S. aureus and E. coli. Moreover, the co-treatment with SAP could remarkably enhance the stimulative effect of HUCMSCs-CM on the angiogenesis and migration of HUVECs in vitro. PF-127 combined SAP-embedded HUCMSCs transplantation resulted in a potently accelerated wound healing process, promoted the number of proliferating cells and newly formed blood vessels, as well as enhanced expression of vascular endothelial growth factor. PF-127 coupled with SAP contributes to HUCMSCs-mediated traumatic wound closure in mice by promoting cell survival, antibacterial action, and angiogenesis. Our results offered a theoretical foundation for the clinical treatment of traumatic skin defects.