Carboxylic acids (CAs) are one of the most ubiquitous and important chemical feedstocks available from biorenewable resources, CO2, and the petrochemical industry. Unfortunately, chemoselective catalytic transformations of CHnCO2H (n = 1–3) groups into other functionalities remain a significant challenge. Herein, we report rheniumV complexes as extremely effective precatalysts for this purpose. Compared to previously reported heterogeneous and homogeneous catalysts derived from high- or low-valent metals, the present method involves a α-C–H bond functionalization, a hydrogenation, and a hydrogenolysis, which affords functionalized alcohols with a wide substrate scope and high chemoselectivity under relatively mild reaction conditions. The results represent an important step toward a paradigm shift from ‘low-valent’ to ‘high-valent’ metal complexes by exploring a new portfolio of selective functional group transformations of highly oxygenated organic substrates, as well as toward the exploitation of CAs as a valuable biorenewable feedstock.