We have used spin polarized density functional theory calculations to perform extensive mechanistic studies of CO2 dissociation into CO and O on the clean Fe (100), (110) and (111) surfaces and on the same surfaces coated by a monolayer of nickel. CO2 chemisorbs on all three bare facets and binds more strongly to the stepped (111) surface than on the open flat (100) and close-packed (110) surfaces, with adsorption energies of -88.7 kJmol -1 , -70.8 kJmol -1 and -116.8 kJmol -1 on the (100), (110) and (111) (110) and (111) facets respectively. We have also investigated the thermodynamics and activation energies for CO2 dissociation into CO and O on the bare and Ni-deposited surfaces.Generally, we found that the dissociative adsorption states are thermodynamically preferred over molecular adsorption, with the dissociation most favoured thermodynamically on the closepacked (110) facet. The trends in activation energy barriers were observed to follow that of the trends in surface work functions; consequently, the increased surface work functions observed on the Ni-deposited surfaces resulted in increased dissociation barriers and vice versa. These results suggest that measures to lower the surface work function will kinetically promote the dissociation of CO2 to CO and O, although the instability of the activated CO2 on the Ni-covered 2 surfaces will probably result in CO2 desorption from the nickel-doped iron surfaces, as is also seen on the Fe(110) surface.
Graphical abstract
Introduction