In order to prepare a highly active catalyst for the catalytic cracking of larger molecules, a novel micromesoporous silicoaluminophosphate composite (define as mesoporous SAPO-5) with hierarchical tri-modal pore size distributions has been firstly synthesized via post-synthetic method in acidic condition and subsequently characterized. Morphology control of the composite is attempted by adjusting pH value of the synthetic system. Three different morphologies of composite, including sphere-, rod-and net-like, are obtained in the different conditions. Possible mechanism for the formation of mesoporous SAPO-5 has been proposed. The mesoporous SAPO-5 exhibits higher cracking activity than conventional microporous SAPO-5 for cracking of 1, 3, 5-triisopropylbenzene (1, 3, 5-TIPB) under the same reaction conditions. The result indicates that the mesoporous SAPO-5 with hierarchical pore structure is favorable for catalytic cracking of large molecule. When the cumene as the reaction molecule, the microporous SAPO-5 catalyst exhibits higher conversion in catalytic cracking of cumene compared to the mesoporous SAPO-5, and the result may be attributed to that microporous SAPO-5 has much stronger acidity and specific selectivity than mesoporous SAPO-5 catalyst in catalytic cracking of cumene. Meanwhile, corresponding carbenium ion mechanism can account for the products formed during the whole reaction process.