Staphylococcus aureus as an opportunistic bacterial pathogen with intrinsic and acquired resistance to many antibiotics is a worldwide problem. The current study was undertaken to evaluate the resistance pattern, and determine the genetic types of multidrug-resistant S. aureus isolated from wound.
This cross-sectional study was conducted over the period of two years (from December 2018 to November 2020) at the hospitals affiliated to Shahid Beheshti University of Medical Sciences, Tehran, Iran. In present study, 75 multidrug-resistant S. aureus isolates collected from wound infections were investigated. Phenotypic resistance was assessed by Kirby–Bauer disk diffusion method. Conventional PCR was performed for the detection of virulence encoding genes. Genotyping of strains was performed based on coa gene polymorphism using multiplex-PCR assay. SCCmec typing, spa typing and MLST were also used to characterize the genotype of the mupirocin, tigecycline and vancomycin resistant multidrug-resistant S. aureus isolates.
All 75 multidrug-resistant S. aureus isolates in the study were confirmed as MRSA. Coagulase typing distinguished isolates into five genotypic patterns including III (40%), I (24%), IVb (16%), V (10.7%) and type X (9.3%). Resistance to tigecycline was detected in 4% of MDR-MRSA isolates and all belonged to CC8/ST239- SCCmec III/t421 lineage. According to our analysis, one VRSA strain was identified that belonged to coa type V and CC/ST22-SCCmec IV/t790 lineage. Resistance to mupirocin was detected in 9.3% of strains. All 7 mupirocin resistant MDR-MRSA isolates exhibited resistance to mupirocin in high level. Of these, 4 isolates belonged to CC/ST8-SCCmec IV/t008 (57.1%), 2 isolates belonged to CC/ST8-SCCmec IV/t064 (28.6%) and one isolate to CC/ST22-SCCmec IV/t790 (14.3%).
Altogether, current survey provides a snapshot of the characteristics of S. aureus strains isolated from patients. Our observations highlighted type III as predominant coa type among multidrug-resistant MDR strains indicating low heterogeneity of these isolates. Our study also indicates the importance of continuous monitoring of the genotypes of MDR-MRSA isolates to prevent nosocomial outbreaks and the spread of MDR isolates.