A numerical model with broad applications to complex (dusty) plasmas is presented. The self-consistent -body code allows simulation of the coagulation of fractal aggregates, including the charge-dipole interaction of the clusters due to the spatial arrangement of charge on the aggregate. It is shown that not only does a population of oppositely charged particles increase the coagulation rate, the inclusion of the charge-dipole interaction of the aggregates as well as the electric dipole potential of the dust ensemble decreases the gelation time by a factor of up to 20. It is further shown that these interactions can also stimulate the onset of gelation, or "runaway growth," even in a population of particles charged to a monopotential where previously it was believed that like-charged grains would inhibit coagulation. Gelation is observed to occur due to the formation of high-mass aggregates with fractal dimensions greater than two, which act as seeds for runaway growth.