Coal price forecasting using complete ensemble empirical mode decomposition and stacking‐based ensemble learning with semisupervised data processing
Jing Tang,
Yida Guo,
Yilin Han
Abstract:Globally, coal is a critical energy source, and the profits of related enterprises are highly related to changes in the coal price. A robust coal purchasing cost forecasting method may enhance the coal purchasing strategies of coal‐consuming enterprises and obtain key information for reducing global carbon emissions. However, forecasting the price of coal is a challenging task due to the noise and high random fluctuation of coal price data. To overcome these obstacles, this research proposes a novel forecastin… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.