2022
DOI: 10.1155/2022/1724506
|View full text |Cite
|
Sign up to set email alerts
|

Coal Spontaneous Combustion Temperature Prediction Based on Fuzzy Combined Kernel Relevance Vector Machine

Abstract: This paper proposes a fuzzy combined kernel relevance vector machine method for the coal spontaneous combustion temperature prediction to avoid the shortcomings of traditional machine learning algorithms, such as the large prediction error, the weak generalization ability of the single kernel function, and the inability to deal with abnormal values. First, build a platform to simulate the coal spontaneous combustion scene and obtain the data of different index gas concentrations and the coal spontaneous combus… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?