The improvement of water and energy use is an important concern in the scope of improving the overall performance of industrial process plants. The investment in energy efficiency comprehended by the most recent sustainability policies may prove to be an effective response to the fall of energy intensity rates associated with the economic crisis brought by the COVID-19 pandemic. The improvement in water efficiency may also prove to be a potential approach due to its interdependencies to energy use, whose exploitation comprises part of the study of the water-energy nexus. Waste heat recovery and water reclamation practices have been exploited to improve water and energy efficiency. A specific method designated “Combined Water and Energy Integration” has been applied to water recycling as both an additional water source and a heat recovery source in a set of water-using processes. In scientific and industrial domains, there is still a need for integrated approaches of water-using and combustion-based processes for overall water and energy efficiency improvements in industrial plants. In this work, an innovative approach for a simultaneous improvement of water and energy use is proposed based on process integration and system retrofitting principles. This proposal is based on the delineation of two innovative concepts: Water and Energy Integration Systems (WEIS) and Water-Heat Nexus (WHN). A review on existing technologies for waste heat recovery, thermal energy storage and heat-driven wastewater treatment is performed, following a conceptualisation design.