According to the Department of Energy, demand response provides an opportunity for end-users to play a significant role in the efficiency, reliability, resilience, and sustainability of a power grid. This is made possible owing to the existence of storage devices and diversity of energy sources at the customer level and the advent of the Internet of Things . Social influences and psychological traits of consumers affect their behavior and decisionmaking. Consequently, there is a necessity to bring the influences of humans, organizations, and societies on the power system together through computational social science into a cyberphysical-social system. Hence, in this paper, we introduce our development of an artificial society of the social demand response of a power system, a well-known approach in computational sociology based on a bottom-up approach, starting from theory. We assume that consumers can engage in demand response to fulfill two aims: save their cost or enhance the sustainability of a power system. The literature concerning sustainability-based demand response is limited to only considering CO2, N OX , and SO2. In addition to N OX , and SO2, we examine the impact of power systems on water pollution, disability-adjusted loss of life year, and exergy in demand response, and provide an environomic-based social demand response. We show that when the level of satisfaction and cooperation of end-user is low, the marginal level of load shaving and improvement in sustainability cannot be fulfilled.