This paper presents a descriptor for course alignment of point clouds using conformal geometric algebra. The method is based on selecting keypoints depending on shape factors to identify distinct features of the object represented by the point cloud, and a descriptor is then calculated for each keypoint by fitting two spheres that describe the local curvature. The method for estimating the point correspondences is to a larger extent based on geometric arguments than the method of Kleppe et al. (IEEE Trans Autom Sci Eng, 2017), which results in improved performance. The accuracy of the curvature-based descriptor is validated in experiments, and is shown to compare favorably to stateof-the-art methods in an experiment on course alignment of industrial parts to be assembled with robots.